
Histogram-Based I/O Optimization for Visualizing
Large-Scale Data

Yuan Hong
Department of Computer
Science and Engineering
The Ohio State University

Columbus, OH 43210-1277
hongy@cse.ohio-

state.edu

Tom Peterka
Mathematics and Computer

Science Division
Argonne National Laboratory

9700 S. Cass Ave.
Argonne, IL 60439

tpeterka@mcs.anl.gov

Han-Wei Shen
Department of Computer
Science and Engineering
The Ohio State University

Columbus, OH 43210-1277
hwshen@cse.ohio-

state.edu

ABSTRACT
We present an I/O optimization method for parallel volume ren-
dering based on visibility and spatial locality. The combined met-
ric is used to organize the file layout of the dataset on a paral-
lel file system. This reduces the number of small, noncontiguous
I/O operations and improves load balance among I/O servers. The
net result is reduced I/O time. Since large-scale visualization is
data-intensive, overall visualization performance improves using
this method. This paper explains the preprocessing of data blocks
to compute feature vectors and the storage organization based on
them. Run-time performance is analyzed with a variety of transfer
functions, view directions, system scales, and datasets. Our re-
sults show significant performance gains over file layouts based on
space-filling curves.

Categories and Subject Descriptors
E.1 [DATA STRUCTURES]: Distributed data structures

General Terms
Histogram Parallel I/O

1. INTRODUCTION
The overall performance of large-scale parallel algorithms is bound

by the cost of data movement. Frequent I/O accesses are needed
to load data that is too large to fit in memory, or that consists of
multiple time-steps. As I/O bandwidth saturates, scientists cannot
visualize large-scale results fast enough, and timely results are crit-
ical to many applications such as on-demand query and real-time
visualization.

Examples of sparse data traversal such as visibility culling can be
used to optimize large-scale data exploration, but sparse traversal
can produce a large number of small I/O operations if not accom-
panied by I/O organization. There has been little research to ad-
dress this problem so far. Space-filling curves such as the Hilbert
curve, Z-curve and others can ameliorate this situation, although

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
UltraVis Workshop ’09 Portland, Oregon USA
Copyright 2009 ACM 978-1-60558-897-1/09/11 ...$10.00.

their original purpose is to balance working load among proces-
sors. In our research we found that the effectiveness of space-filling
curves is limited because they only consider spatial locality, with-
out taking visibility into account. Their overall effectiveness di-
minishes as the number of blocks per processor decreases; hence,
they do not scale well with high numbers of processors.

In this paper we present a method to optimize I/O performance
for parallel volume rendering by using a more complex metric that
considers both visibility and spatial locality. Moreover, the tech-
nique presented in this paper also considers the data access patterns
resulting from visibility culling and optimizes the file layout ac-
cordingly. We first perform visibility preprocessing on data blocks
independent of view conditions and transfer functions. We then or-
ganize the data blocks in storage based primarily on the visibility
feature vector, and secondarily on spatial locality when blocks have
the same visibility feature vector. By integrating visibility culling
with I/O organization, our method helps reduce I/O time and bal-
ances load among I/O servers.

We conducted a series of experiments that show that our method
scales better than space-filling curves with the number of proces-
sors. The tests show that the performance improves over a large
number of view directions, transfer functions, and time steps. Our
contributions are reduced I/O time during rendering, independent
of transfer functions and view parameters. We also provide heuris-
tics about tuning parameters of our algorithm such as the block size,
stripe size, and number of view samples.

2. RELATED WORK
Related literature includes visibility culling for rendering, out-

of-core methods related to storage optimization, and collective I/O
optimization.

2.1 Visibility Culling for Rendering
Early ray termination is a simple method for culling occluded

data in volume rendering. When accumulating opacity from front
to back, a ray can be terminated prematurely once a threshold opac-
ity is attained. No further data points are visible beyond that point,
so they are not considered. The effect of early ray termination is
limited in a parallel environment. In [9], the efficiency of early
ray termination drops by approximately 30% as the number of pro-
cesses scales up.

More effective culling approaches for parallel volume algorithms
exist. Ma and Crockett [6] studied parallel rendering of unstruc-
tured grid data using cell projections. To further improve perfor-
mance, the authors culled portions of the volume early in the visual-
ization pipeline. In [17], hierarchical occlusion maps (HOM) were

Figure 1: The overview of our algorithm

introduced for visibility culling on complex models with high depth
complexity, using hierarchies in object space and image space. CPU-
based culling methods were also presented in [2]. Liu et al. [5]
described a progressive view-dependent isosurface extraction algo-
rithm. This approach determines visible voxels by casting a small
number of viewing rays and then propagating the visibility infor-
mation up from these seed voxels to obtain the full visibility for the
volume. Gao et al. [1] proposed a scalable visibility culling method
based on plenoptic opacity functions (POFs). A POF performs well
if the transfer functions are known or can be derived from a small
set of base transfer functions. The authors assume that the transfer
functions can be expressed by a linear combination of the corre-
sponding bases. But in some cases, as in [16], transfer functions
can be generated from nonlinear combinations of the existing trans-
fer functions as well.

2.2 Out-of-core Methods
In [12], authors reviewed several principle out-of-core algorithms

for scientific visualization. Among the research on out-of-core al-
gorithms, Pascucci and Frank [8] defined hierarchical indices over
very large regular grids, leading to efficient disk layout. Their ap-
proach is based on the use of the Lebesgue curve for defining the
data layout and indexing. They demonstrated their approach in a
progressive slicing of very large multi-resolution datasets. Isen-
burg et al. [4] described a streaming format for polygon meshes to
replace offline mesh formats for large datasets. It is an input and
output format that processes meshes in a streaming, or pipelined
fashion.

2.3 Collective I/O Optimization
Besides being an important computational tool, parallelism is the

basic vehicle for accelerating I/O throughput. Parallel application
programs access parallel file systems through MPI-IO calls such
as MPI_ File_read_all. In order to reduce the number of disk ac-
cesses, techniques such as two-phase I/O, data sieving and list I/O
aggregate smaller accesses into a single larger access [10, 14].

The tools that are built into a parallel I/O system cannot guar-
antee good I/O performance alone. Intelligent algorithms that or-
ganize data effectively are also needed. File layouts and support-
ing systems are tuned in [3] to achieve higher performance. Wang
et al. [15] present a profile-guided greedy partitioning algorithm
to parallelize I/O access for file-intensive applications on cluster-
based systems. Smirni et al. [13] analyzed the I/O behavior of sci-

entific applications and their interactions with the file system. They
concluded that tuning of file system policy parameters to match I/O
demands can significantly increase I/O throughput.

3. METHOD

3.1 Overview
Our method has five steps, and Figure 1 shows the overall pro-

cess. The first step is to divide the data into uniform-size blocks and
allocate blocks to processors. In steps 2 and 3, multiple view direc-
tions are sampled and a view histogram is constructed for each view
of each block. In the fourth step, feature vectors are constructed for
each block by concatenating the view histograms. Clustering is
performed on these feature vectors in order to group blocks with
similar visibility together. The last step is to organize the data
blocks into storage based on the clustering results. Within a cluster,
blocks are further organized by spatial locality. All five steps are
performed in preprocessing, before running the volume rendering.
They can be performed efficiently in parallel. Figure 2 shows the
preprocessing time on the IBM Blue Gene/P (BG/P) for one of our
test datasets: a supernova that has a size of 276GB and 1024 sam-
pled views. The total preprocessing time scales with the number of
processors.

The steps in Figure 1 are explained in more detail in the follow-
ing subsections.

3.2 View Histogram
A view histogram is the signature of a block’s visibility for a

particular view direction. Two blocks with similar view histograms
will have similar visibility in this view direction irrespective of
transfer function. The view histogram is computed once during
preprocessing and is used with multiple transfer functions during
volume rendering. The view histogram is computed as follows.

Each processor has a number of data blocks in its subdomain,
and we use the term “target block” to indicate the current block
in question. For each pixel in the projection of the target block,
a ray is cast through the blocks in front of the target block. A
histogram is constructed from the frequency of data values along
this ray. These histograms are averaged over all of the pixels in the
projection, resulting in a single view histogram for each sampled
view direction.

A block’s visibility in a given view is determined by the accumu-

256 512 1024 2048
200

400

600

800

1000

1200

1400

1600

1800

2000
Preprocessing Time for Supernova

Number of processors

T
im

e
(S

ec
on

ds
)

Total Time

Figure 2: The total preprocessing time for supernova data

lated data from the front blocks, so we can calculate the histograms
along the casting rays in front-to-back order and stop when we
reach the target block. Equation 1 (Max [7]) expresses accumulated
opacity along a viewing ray and shows that the final accumulated
opacity does not depend on the sampling order.

α = 1−
m

∏
i=1

(1−α(Si))ki (1)

where m is the number of unique values sampled along the ray,
α(Si)) is the corresponding opacity for the scalar value Si, and ki is
the number of sample points that have the scalar value Si.

We apply a similar approach to computing view histograms in
parallel. Each block is handled independently by the processor that
owns it and the local histograms are then communicated among
processors to build view histograms. Recall that the view histogram
is only for a single view direction, but in the following, we de-
scribe how the view histograms for multiple views can be used to
construct a block’s visibility feature vector.

3.3 Visibility Feature Vector
A visibility feature vector is the descriptor of the data values in

the block for all sampled view directions. In our implementation,
view directions are taken at uniform points on a view sphere. Sub-
section 3.3.1 describes how to determine an appropriate number of
sample views to use. The resulting histograms are concatenated
into a feature vector for one block, and each element of the feature
vector is one of the view histograms. This is repeated for all blocks
in the data. Blocks with similar feature vectors will have similar
visibility in most view directions, and Subsection 3.3.2 explains
how to determine similarity among feature vectors.

3.3.1 View Direction Sampling
This section examines how to determine an appropriate number

of view directions to sample. We use an iterative method that sam-
ples increasing numbers of views and terminates when the variance
across view directions is small enough. In one iteration, view his-
tograms are computed for the sampled views, and the variance is
calculated across all the views for each bin in the histogram. The
variances are summed across all bins in the histogram and averaged
across all the blocks. This yields a single variance for the iteration,
which represents the average histogram variance. The number of
view directions taken from the view sphere quadruples with each

iteration and the process repeats. When the change in variance is
below a threshold, the process stops. In general, the number of
view samples is data-dependent. In our test datasets, the variance
stabilized after at most five iterations, or 1024 view samples.

Figure 3 shows the variance with respect to the number of sam-
pled views for one of our test datasets. The variance increase is less
than 10−5 when the number of sampled views equals 256. Sam-
pling more views is unnecessary for this dataset.

16 64 256 1024
4.3

4.35

4.4

4.45

4.5

4.55

4.6

4.65 x 10−4 Number of Sample Views vs Variance

Number of Sampled Views
Va

ria
nc

e

Figure 3: The variance as a function of the number of sampled
views for Viswoman dataset. The variance changes slowly after
the number of sampled views approaches 256.

3.3.2 Distance Metrics
Next we examine how to cluster similar feature vectors together;

in particular, what distance metric should be used to do so. To
compute the difference between two view histograms, the tradi-
tional Euclidean distance does not suffice because it is a flat metric
that does not consider the shape of the vectors, although the vector
shape influences the computed visibility. Instead, we use the Earth
Mover’s Distance (EMD) [11] so that the difference between two
vectors accounts for the distribution as well as the actual histogram
values. When using EMD, the ground distance matrix, C, must be
defined.

For two feature vectors V1 = [p1, p2, ..., pn] and V2 = [q1,q2, ...,qn]
pi and q j represent the number of samples in bins i and j, respec-
tively. C is a matrix with dimensions n× n. Each entry Ci j is the
ground distance from pi in V1 to q j in V2. Formally, the ground
distance matrix is defined as:

Ci j =
||pi−q j||

wi, j
(2)

where ||.|| is the L-2 norm operator, and wi, j is the weight for ad-
justing the bin index difference between bin i and bin j: the larger
the difference between i and j, the smaller the value of wi, j . We

use a nonlinear mapping to calculate wi, j = e−
(i− j)2

σ2 , where σ is a
user-defined width to control the distance between two bins.

3.4 Organizing Data into Storage
Our layout optimization is designed for a parallel file system

such as PVFS that distributes data in a file across multiple servers.
We will reorder blocks in the data file based on similar feature vec-
tors and stripe them in a round-robin manner across file servers.

Subsection 3.4.1 discusses how similar feature vectors are clustered
using the distance metric defined earlier, and Subsection 3.4.2 dis-
cusses the ordering of clusters in the data file. The effect of stripe
size is examined in Section 4.5.

3.4.1 Meanshift Clustering
Meanshift clustering was used to group blocks based on their fea-

ture vectors. Recall that the visibility feature vector has a format of
[h1,h2, ...,hn], where each entry of the vector, hi, is a visibility his-
togram. To group the visibility feature vectors, we apply the EMD
metric described in Section 3.3.2. Given two visibility feature vec-
tors [h1,h2, ...,hn] and [g1,g2, ...,gn], where n is the length of two
vectors, the distance is calculated as:

D =

√
n

∑
i=1

EMD(hi,gi)2 (3)

where EMD is the Earth Mover Distance.

3.4.2 Data Organization
By grouping blocks with similar values of D we can classify data

blocks based upon their visibility and spatial locality. After the
clustering process described in section 3.4.1 is completed, blocks
that have similar visibility, thus most likely to be accessed together,
are placed in a cluster. We keep a data structure for each block that
stores three variables: an index that describes the block’s spatial
location, a cluster ID indicating which cluster the block belongs to,
and an EMD from the block to the center of the cluster in the spatial
domain. We also keep a table structure to map the blocks’ spatial
index to their physical position in the file layout.

Data blocks in close proximity or having similar visibility have
a higher probability to be accessed together. To order blocks in the
file, we first arrange them based on their EMD to the cluster center;
then, for those blocks that have approximately the same distance to
the cluster center, we arrange them based on their spatial position.

After the relative positions of blocks in a cluster are determined,
they are copied into PVFS. Data blocks in a cluster are striped
along I/O servers. Data blocks in the same cluster are likely to
be accessed together, and striping these blocks across all servers
can improve load balance, avoid network congestion, and improve
I/O performance per server.

4. VOLUME RENDERING PERFORMANCE
RESULTS

We tested the effect of our preprocessing method on the perfor-
mance of parallel volume rendering. We examined the scalability
of the I/O time and end-to-end time in three different datasets under
different view directions, transfer functions, and time-steps.

4.1 Datasets and Testing Environment
All our tests were run on an IBM Blue Gene/P supercomputer

at the Argonne National Laboratory. The 512×512×1728 Visible
Woman (VisWoman) dataset from the National Library of Medicine,
the 2048×2048×1920 Richtmyer-Meshkov Instability (RMI) dataset
from the Lawrence Livermore National Laboratory and the 3456×
3456× 3456 supernova dataset from UC Davis were used in our
tests. The Viswoman dataset consists of 2-byte short integers, RMI
consists of 1-byte values, and supernova consists of 4-byte floating-
point values. We supersampled the 1102th time step of the su-
pernova (originally 4323) data to 34563. The Viswoman volume
was partitioned into 110,592 blocks of size 163. The RMI volume
was partitioned into 245,760 blocks of size 323, and the super-
nova dataset was partitioned to 10,077,696 blocks with 163 block

size. The resultant supernova data is about 276GB, when including
a ghost boundary surrounding each block. The block sizes were
chosen as described in Section 4.4. All files are stored in PVFS
with 16 I/O servers. The Viswoman dataset is a static dataset. RMI
and supernova are time-varying datasets with approximately 1000
time-steps each.

Multiple view directions were uniformly sampled on a view sphere.
Four different file layouts were used to test the I/O performance.
The first was the canonical layout (raw data) where the data blocks
were stored as they appeared from the simulation. The second and
third were space-filling curves: Hilbert curve and Z-curve. The last
was the new layout using our visibility-based clustering. We tested
multiple transfer functions in each of the file layouts.

4.2 Scalability of I/O Time
Figure 4 shows the comparisons of I/O performance between the

four file layouts as the number of processors increases. Figure 4(a)
is the Viswoman dataset, Figure 4(b) is the 16th time-step of RMI
and Figure 4(c) is the supernova dataset.

For each file layout, data were volume rendered in 256 randomly
selected view directions using the same transfer function. The av-
erage I/O time is plotted. Figure 4(a) and 4(b) show that the Z-
curve layout does not improve much compared to the raw data file
layout; 4(b) and 4(c) show that the Hilbert curve performs better
than the Z-curve and raw data layout. Our histogram-optimized file
layout has the best performance overall. In Figure 4(c) at 4096 pro-
cessors, the histogram-optimized layout performs up to 62% bet-
ter than the other file layouts. Similar performance improvements
were observed using other test transfer functions (Section 4.8) and
using different block sizes (Section 4.4). The I/O performance for
our histogram-optimized layout scales well out to 4096 processors,
while the space-filling curves approach the raw data performance
at that scale.

4.3 Scalability of End-to-end Time
Figure 5 illustrates end-to-end time for the supernova dataset,

which is broken down into I/O time, rendering time and image
compositing time. All tests used the same direct volume renderer
with the same transfer function, and the image size is 1024×1024.
Figure 5 shows that I/O is the main bottleneck. The histogram-
optimized layout has a smaller percentage of I/O time, compared
with the other two space-filling curve layouts, especially with a
larger number of processors. For example, at 4096 processors, the
end-to-end time is 43% faster than the other two layouts. This is a
similar percentage as in Section 4.2 because the end-to-end time is
mainly dictated by I/O.

of Processors I/O Rendering Compositing Total
64 4.37 1.02 1.2 6.59

128 3.66 0.46 0.8 4.92
256 3.43 0.33 0.8 4.56
512 1.77 0.20 0.6 2.57
1024 0.91 0.12 0.5 1.53

Table 1: Performance (in seconds) for volume rendering Vis-
woman.

Table 1 shows the performance results using different numbers of
processors for the Viswoman dataset. The overall times are shorter
than those in Figure 5(a) because the Viswoman data is smaller than
the supernova, but the fraction of time spent on I/O, rendering, and
compositing is similar.

4.4 Effect of Block Size

4 16 32 64 128 256 512 1024 2048
0

5

10

15

20

25
I/O Time vs Number of Processors

Number of processors

I/
O

 T
im

e
 (

se
co

n
d

s)

Z Curve
Raw Data
Hilbert Curve
Histogram Optimized

(a) Viswoman

16 32 64 128 256 512 1024 2048
0

10

20

30

40

50

60

70

80

90
I/O Time vs Number of Processors

Number of processors

I/
O

 T
im

e
 (

se
co

n
d

s)

Z Curve
Raw DATA
Hilbert Curve
Histogram Optimized

(b) RMI

512 1024 2048 4096
0

50

100

150

200

250

300
I/O Time vs Number of Processors

Number of processors

I/
O

 T
im

e
 (

se
co

n
d

s)

Z Curve
Raw Data
Hilbert Curve
Histogram Optimized

(c) Supernova

Figure 4: I/O time comparisons for three datasets with increasing sizes. In all three datasets, our histogram-optimized method scales
better than the other methods tested.

512 1024 2048 4096
0

50

100

150

200

250
End−to−End Time

Number of Processors

I/O
 T

im
e

(S
ec

on
ds

)

Compositing
Rendering
I/O

(a) Histogram optimized

512 1024 2048 4096
0

50

100

150

200

250

300
End−to−End Time

Number of Processors

I/O
 T

im
e

(S
ec

on
ds

)

Compositing
Rendering
I/O

(b) Hilbert Curve

512 1024 2048 4096
0

50

100

150

200

250

300
End−to−End Time

Number of Processors

I/O
 T

im
e

(S
ec

on
ds

)

Compositing
Rendering
I/O

(c) Z Curve

Figure 5: End-to-end time comparisons for three layouts for the supernova dataset. In all three layouts, our histogram-optimized
method has smaller portion of I/O time than the other methods.

The data block size plays an important role in the performance
of our algorithm. The determination of block size is a trade-off
between the number of I/O operations and the size of data read. We
selected block sizes that are multiples of the read buffer size. For
instance, our MPI_IO implementation has a default buffer size of
16KB, and we choose block sizes of 163 (163×2 bytes per voxel =
8KB) for viswoman, and block size of 323 (323×1 byte per voxel
= 32KB) for RMI.

The choice of which multiple of system buffer size to use is
found empirically. In Figure 6, two tests were conducted to find
the proper block size. Figure 6(a) shows that in our histogram-
optimized method, the block size of 163 has the best I/O perfor-
mance over different number of processors, compared with other
block sizes (for the Viswoman dataset). The optimal block size is
independent of process count. Figure 6(b) shows that the histogram-
optimized method improves I/O time over other methods at all
block sizes, but finding the optimal block size is necessary in or-
der to optimize the actual I/O time.

4.5 Effect of Stripe Size
In PVFS, files are striped along multiple I/O servers with a de-

fault stripe size. In our study, we found that the stripe size, if not
properly chosen, can degrade the overall I/O performance by break-
ing the block continuity. We observed that the best I/O performance
was achieved when the stripe size approached the average size of a

cluster, computed as described in Section 3.4. Figure 7 shows the
I/O time as a function of stripe size for Viswoman. This dataset
has 110,592 blocks with a size of 163, clustered into about 1000
clusters. The average number blocks in each cluster is 110. So
we expect the optimal stripe size to be 1 MB, which is close to
110×163×2 bytes = 901,120 bytes. Figure 7 shows that the I/O
time as a function of stripe size for Viswoman supports our hypoth-
esis.

4.6 Effect of View Directions
Figure 8 shows the standard deviations of I/O time across view

directions for the histogram-optimized layout in RMI. 256 view
directions selected at random were volume rendered, and standard
deviations of I/O times were calculated over these view directions.
This procedure was repeated with different numbers of processors.
Figure 8 shows that the deviation in I/O time is less than 0.8 for the
histogram-optimized layout while it is as high as 1.6 for the Hilbert
curve layout. This test confirms that the clustering metric we used
in preprocessing accurately represents a variety of view conditions
encountered at run-time.

4.7 Effect of Time-steps
Figure 9 compares I/O time between 64 time steps for the RMI

dataset. The histogram-optimized layout and the Hilbert curve lay-
out were used.

The result shows the optimized file layout has lower I/O time
consistently across multiple time-steps. This is an important con-

8^3 16^3 32^3 64^3
5

6

7

8

9

10

11

12

13
I/O Time as a Function of Block Size

Block Sizes

I/
O

 T
im

e
 (

S
e
co

n
d
s)

128 Processors
256 Processors
512 Processors

(a) Block size vs I/O time for dif-
ferent number of processors

8^3 16^3 32^3 64^3
5

6

7

8

9

10

11

12

13

I/O Time as a Function of Block Size

Block Sizes
I/
O

 T
im

e
 (

S
e
co

n
d
s)

Z Curve
Hilbert Curve
Histogram Optimized

(b) Block Size vs I/O time for dif-
ferent layouts

Figure 6: The determination of block sizes for the Viswoman
dataset. Left: A block size of 163 has the best I/O performance,
irrespective of process count. Right: The histogram-optimized
method is better than space-filling curves at all block sizes.

0.2 0.5 1.0 2.0 4.0 8.0 16.0
1.6

1.8

2

2.2

2.4

2.6

2.8

3
The Effect of Stripe Size on I/O Time

Stripe Size (MB)

I/O
 T

im
e

(s
ec

on
ds

)

Figure 7: The I/O time vs. stripe size for Viswoman dataset.

sideration when dealing with time-varying data, because the method
must perform well across the entire dataset, not just at selected
time-steps.

4.8 Effect of Transfer Function
Figure 10 compares the histogram-optimized layout and Hilbert

curve layout for the supernova dataset. Multiple transfer functions
were applied to render objects with distinct appearance, ranging
from solid to semi-transparent, with single and multiple compo-
nents ranging from small to large sizes. To generate the transfer
functions, we randomly selected 2 or 3 modes from the resolution
of the transfer function and constructed Gaussian curves for each
mode by randomly setting the curve parameters. The correspond-
ing rendered images are also shown in Figure 10. Over all of the
transfer functions that we tested, the histogram-optimized file lay-
out has better performance than the Hilbert curve layout.

5. CONCLUSIONS AND FUTURE WORK
This paper introduces a histogram-based I/O optimization for

parallel volume rendering. Histograms based on visibility are pre-
computed for each block from a set of sample views, and feature

0 4 16 32 64 128 256 512 1024 2048
0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Standard Deviation in I/O Time for 256 View Directions

Number of Processors

S
ta

nd
ar

d
D

ev
ia

tio
n

Hilbert Curve
Histogram Optimized

Figure 8: Standard deviation of I/O time across 256 view di-
rections demonstrates that the histogram-optimized layout per-
forms consistently over a variety of view conditions.

0 10 20 30 40 50 60
1

2

3

4

5

6

7
I/O Time Across Time−steps

Time−step

I/O
 T

im
e

(S
ec

on
ds

)

Hilbert Curve
Histogram Optimized

Figure 9: Results from rendering 64 time-steps of the RMI
dataset with 512 processors. The I/O time for histogram-
optimized layout and Hilbert curve layout are plotted.

vectors are constructed from them. Then, the data blocks are orga-
nized in storage according to the feature vectors and spatial local-
ity. Experimental results to test the I/O performance during volume
rendering showed that the metric is effective in predicting the I/O
pattern and reducing the I/O time, independent of transfer func-
tions and view directions. We demonstrated scalability, and offered
heuristics toward setting the block size and stripe size.

We plan to investigate the following issues in the future. Our
selection of sample views during preprocessing and during volume
rendering were taken at the same zoom level. Zooming in or out
at run-time can change the visibility culling dramatically from that
of preprocessing. Multilevel view sampling based on resolutions
is a possible solution to solve this problem. Each level of view
sampling corresponds the specific resolution and can be used to
interpolate new levels.

Another current limitation is the dimensionality of transfer func-
tions. At present, our method assumes a 1D transfer function. In the
future, we plan to extend our algorithm to higher dimensional trans-
fer functions and design a more compact representation to store the
resulting histograms.

We plan to also test our method on different parallel file systems
such as Lustre. Since our method does not assume a particular

Figure 10: The I/O time comparisons between the histogram-optimized file layout and the Hilbert curve file layout for supernova
dataset. Over the multiple transfer functions tested, histogram-optimized file layout has a better I/O performance.

architecture, we expect to see similar performance gains on other
systems.

6. ACKNOWLEDGMENT
This work was supported by the U.S. Department of Energy un-

der Contract DE-AC02-06CH11357.

7. REFERENCES
[1] J. Gao, J. Huang, H.-W. Shen, and J. A. Kohl. Visibility

culling using plenoptic opacity functions for large volume
visualization. In VIS ’03: Proceedings of the 14th IEEE
Visualization 2003 (VIS’03), page 45, Washington, DC,
USA, 2003. IEEE Computer Society.

[2] S. Grimm, S. Bruckner, A. Kanitsar, and M. E. Gröller.
Memory efficient acceleration structures and techniques for
cpu-based volume raycasting of large data. In VG ’04:
Proceedings of the 2004 IEEE Symposium on Volume
Visualization and Graphics, pages 1–8, Washington, DC,
USA, 2004. IEEE Computer Society.

[3] F. Isaila and W. F. Tichy. Clusterfile: a flexible physical
layout parallel file system. Concurrency and Computation:
Practice and Experience, 15:653–679, 2003.

[4] M. Isenburg and P. Lindstrom. Streaming meshes. In Proc.
IEEE Visualization 2005, pages 231–238, 2005.

[5] Z. Liu, A. Finkelstein, and K. Li. Progressive
view-dependent isosurface propagation. In the Joint
EurographicsąłIEEE TCVG Symposium on Visualization 01’,
2001.

[6] K.-L. MA and T. Crockett. A scalable, cell-projection
volume rendering algorithm for 3d unstructured data. In

1997 Symposium on Parallel Rendering, IEEE CS Press,
pages 95–104, 1997.

[7] N. Max. Optical models for direct volume rendering. IEEE
Transactions on Visualization and Computer Graphics,
1(2):99–108, 1995.

[8] V. Pascucci and R. J. Frank. Global static indexing for
real-time exploration of very large regular grids. In
Supercomputing ’01: Proceedings of the 2001 ACM/IEEE
conference on Supercomputing (CDROM), pages 2–2, New
York, NY, USA, 2001. ACM.

[9] T. Peterka, R. Ross, H. Yu, K.-L. Ma, W. Kenall, and
J. Huang. Assessing improvements in the parallel volume
rendering pipeline at large scale. In Proc. SC 08 Ultrascale
Visualization Workshop, Austin TX, 2008.

[10] J.-P. Prost, R. Treumann, B. Jia, R. Hedges, and A. Koniges.
Mpi-io/gpfs, an optimized implementation of mpi-io on top
of gpfs. In ACM/IEEE SuperComputing ’01, pages 17–17,
2001.

[11] Y. Rubner, C. Tomasi, and L. J. Guibas. A metric for
distributions with applications to image databases. In IEEE
International Conference on Computer Vision,98, pages
59–66, jan 1998.

[12] C. Silva, Y.-J. Chiang, W. Correa, J. El-Sana, and
P. Lindstrom. Out-of-Core Algorithms for Scientific
Visualization and Computer Graphics. 2003.
http://www.sci.utah.edu/ csilva/papers/silva-et-al-2003.pdf.

[13] E. Smirni, C. L. Elford, A. J. Lavery, and A. A. Chien.
Algorithmic influences on i/o access patterns and parallel file
system performance. In ICPADS ’97: Proceedings of the
1997 International Conference on Parallel and Distributed
Systems, pages 794–801, Washington, DC, USA, 1997. IEEE

Computer Society.
[14] R. Thakur, W. Gropp, and E. Lusk. Optimizing

noncontiguous accesses in mpi-io. Parallel Computing,
28:83–105, 2002.

[15] Y. Wang and D. Kaeli. Profile guided i/o partitioning. In
ACM International Conference on Supercompuing ’03, jun
2003.

[16] Y. Wu, H. Qu, H. Zhou, and M. Chan. Transfer function
fusing. In IEEE Visualization ’06, 2006.

[17] H. Zhang, D. Manocha, T. H. Kenneth, and E. H. Iii.
Visibility culling using hierarchical occlusion maps. In In
Proc. of ACM SIGGRAPH, pages 77–88, 1997.

